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Abstract—Advances in ubiquitous sensing, computing and wireless communication technologies are leading to the development of
cyber-physical systems (CPS), which promise to revolutionize the way we interact with the physical world. CPS applications, such
as healthcare monitoring, may involve many users and objects scattered over a wide area. One critical function of CPS is object
search in the physical world through the cyber sphere that enables interaction between the cyber and physical spheres. Some of the
previously proposed physical object search engines use RFID tracking, and others collect the information of object locations into a
hierarchical centralized server. The difficulty of widely deploying RFID devices, the centralized search, and the need for periodical
location information collection prevent CPS from achieving higher scalability and efficiency. To deal with this problem, we propose a
Social-aware distributed Cyber-Physical human-centric Search engine (SCPS) that leverages the social network formed by wireless
device users for object search. Without requiring periodical location information collection, SCPS locates objects held by users based
on the routine user movement pattern. Moreover, using a social-aware Bayesian network, it can accurately predict the users’ locations
even at the occurrence of exceptional (i.e., non-routine) events (e.g., raining) that break user movement pattern. Thus, SCPS is more
advantageous than all previous social network based works which assume that user behaviors always follow a certain pattern. Further,
SCPS conducts the search in a fully distributed manner by relying on a distributed hash table (DHT) structure. As a result, SCPS
achieves high scalability, efficiency and location accuracy. Extensive real-trace driven simulation results show the superior performance
of SCPS compared to other representative search methods including a hierarchical centralized method, a decentralized method, and
two social network based methods. The results also show the effectiveness of different components of SCPS.
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1 INTRODUCTION

Advances in ubiquitous sensing, computing and
wireless communication technologies are leading to the
development of cyber-physical systems (CPS), which
promise to revolutionize the way we interact with the
physical world. CPS are computer systems that monitor
and interact with a constantly changing physical
environment. While many technologies are important
to achieving high performance CPS, perhaps one of
the most essential challenges is object search in the
physical world through the cyber sphere that enables
interaction between the cyber and physical spheres [1].
The problem dealt in this paper is human-centric object
search. That is, how to efficiently search objects carried by
people (such as documents, keys and electronic files) in the
physical world through a computer system? Such a search
engine could significantly facilitate our work and daily
life. Image the search engine helps a student to locate
persons who have the key to his lab when he forgot
to take the key or locate the textbook he needs in the
coming class when he forgets to take the book.

CPS applications, such as healthcare monitoring, are
becoming increasingly prevalent, and involve ubiquitous
users and objects scattered over a wide area. Large-scale
CPS require that a search engine can provide scalable and
efficient search service. Low latency, which enables users
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to locate objects quickly, and high location accuracy are
also critical requirements to the search engine design.
However, current physical object search methods fail to
meet these requirements.

Many existing search methods for physical objects rely
on RFID tracking [2], [3], [4]. These methods are not
applicable for searching objects carried by people who
are moving around in a wide area, since deploying a
large number of outdoor sensing devices is prohibitively
costly. Some object search methods such as MAX [3],
Microsearch [5] and Snoogle [4] utilize a hierarchical
centralized structure, where substations are connected
to one central station. The substations collect informa-
tion of its nearby objects and conduct local search for
its nearby nodes. Queries cannot be resolved locally
are forwarded to the central station, which conducts
global search among substations. However, the central-
ized global search leads to low scalability.

Note that the number of mobile devices with ad
hoc wireless communication capacities (e.g., WiFi and
Bluetooth) has been increasing at an incredible speed.
For example, the worldwide iPhone users increased by
21.1 million in 2009 and by 26.8 million in 2010 [6].
The mobile device users constitute a social network, in
which human mobility exhibits certain patterns, and is
predictable to a large extent [7]. Also, individuals are
tied by one or more specific types of relationship, such as
friendship, kinship or trade [8]. In addition, wireless sen-
sors are widely deployed for monitoring environment,
such as weather and traffic. The increasing number of
mobile users, wireless sensor nodes and base stations
(BSs) nowadays promises to enhance the underlying
communication capabilities needed in scalable search
engines and creates new opportunities for innovations
in human-centric object search.

By taking these opportunities, in this paper, we pro-
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pose a Social-aware distributed Cyber-Physical human-
centric Search engine (SCPS) which does not specifically
depend on additional RFID or sensor devices. Without
periodical location information collection, SCPS locates
objects held by users based on the user movement
patterns in the social network. Moreover, using Bayesian
network combined with social network (i.e., social-aware
Bayesian network), it can find the users’ locations when
exceptional (i.e., non-routine) events (e.g., raining, traffic
jam and meeting friends) occur, which breaks user rou-
tine movement patterns. For example, a person does not
play football as usual when it is raining but goes to the
gym instead. If two friends1 bump into each other, they
may stay together for a time period. Further, SCPS con-
ducts the search in a fully distributed manner by relying
on a Distributed Hash Table (DHT) structure constituted
by BSs, which search objects for their nearby mobile
users. SCPS is distinguished by its high scalability, effi-
ciency, low latency and high accuracy in object searching.

Social networks also have been leveraged in many
routing schemes in Delay Tolerant Networks (DTNs)
and Mobile Ad hoc Networks (MANETs) [9], [10], [11],
[12], [13], [14]. Assuming that the meeting probability
between nodes keeps approximately the same all the
time, these schemes exploit the history of contacts and
cluster nodes with high meeting frequency or choose
the node which has high probability of meeting the
destination as the next hop. However, the schemes ne-
glect the external factors (or conditions) in the physical
world that break people’s routine movement patterns.
SCPS is more advantageous than these schemes in that
it can handle exceptions in human mobility pattern, thus
providing more accurate node location prediction. The
social-aware Bayesian network in SCPS can be adopted
in these schemes to enhance routing efficiency. Like the
social network based schemes and current online social
networks (e.g., Facebook), we assume that users joining
in the SCPS system are willing to provide social infor-
mation (e.g., relationship and interests) and enable the
system to predict their locations. We leave the privacy
protection from malicious nodes as our future work.

The rest of the paper is outlined as follows. Section
2 presents a survey of related work. Section 3 details
the SCPS design with an emphasis on its structure,
social-aware Bayesian network and object searching
process. Section 4 presents the performance evaluation
of SCPS in comparison with other methods, and Section
6 concludes this paper with remarks on our future work.

2 RELATED WORK

Physical object search. In recent years, a number of
methods for physical object search or localization have
been proposed. MAX [3] is perhaps the first search
engine for physical objects. It has a centralized hierarchy
formed by station and substation for object searching.
Descriptions such as “the 2nd shelf on the 1st floor”
are utilized to depict the locations of the substations.
Substations can sense the RFIDs attached to the objects
nearby, and they are responsible for building inverted

1. Two persons with a direct relationship (e.g., co-workers, family
members, classmates and business partners) in a social network are
called friends.

index2 of their nearby objects for local search. The central
station stores inverted index of substations. Nodes send
queries to the substations, which send back the IDs
of nodes containing the searched keywords. For the
queries that cannot be met locally, they are directed
to the central station, which returns the most matched
substations. Snoogle [4] extends MAX by adding the
schemes for supporting multiple-keyword search and
top-k query. It also uses a two-layer hierarchical archi-
tecture formed by KeyIP and IPs, functioning as the
central station and substations in MAX, respectively.
Microsearch [5] further details the design and implemen-
tation of the top-k search using wireless sensor nodes
with limited memory space. Also, this work presents a
memory efficient algorithm and a theoretical model of
the search to find the optimized parameters including
inverted index size. However, the centralized structure
in MAX, Snoogle and Microsearch make them vulnerable
to congestions due to many global queries, leading to
low scalability. Home-explorer [15] is another physical
object localization system. It supports the localization of
both “smart nodes” (nodes equipped with sensors) and
“hidden objects” (objects without sensors). It detects the
hidden objects according to their influence on the smart
nodes and further infers their categories by matching the
pre-defined attributes of object categories. MASCAL [2]
is an operational hospital asset management system. It
utilizes active Wi-Fi RFID tags to enable the real-time
tracking of patients and assets inside a hospital.

Some works [16], [17], [18] focus on the localization
of sensors based on coordination schemes, while others
rely on radio frequency or ultrasound to support sensor
location. Bruck et al. [19] proposed an anchor-free 2D
localization scheme by using local angle measurement
techniques. Kwon et al. [20] proposed a self-localization
scheme for a large scale sensor network. The scheme
adopts acoustic ranging or radio interferometry to ac-
quire inter-node distance measurements to compute the
node locations.

DHT systems. DHT systems, such as CAN [21], Chord
[22], Pastry [23], Tapestry [24] and Moore [25], are de-
centralized file sharing systems which provide scalable
key-to-vale search schemes. The DHT systems store files
to their mapped nodes and locate files given file keys in
a distributed manner. They have optimized complexity
of O(logN) for one lookup and O(log2N) for one node
leaving or joining, where N is the number of nodes in the
system. However, the DHT overlays cannot be directly
applied to MANETs, due to the limited computing and
energy capacity of mobile devices, transmission range
constraint, and dynamic node mobility. High mainte-
nance overhead for DHTs due to dynamics can easily
exhaust the energy of mobile devices.

Social network based routing. Social networks re-
cently have been leveraged for routing in DTNs [11],
[12], [14] and MANETs [9], [10], [13]. These routing
schemes derive the routine of each node from statistical
analysis of historical data to help in routing. PROPHET
[9] always chooses the node with the highest probability
of meeting the destination as the next hop and requires
nodes to exchange information for the probability cal-

2. Inverted index is a data structure, which shows the mapping of
objects to their owners or locations.
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culation. To optimize PROPHET, Daly and Haahr [11]
exploited ego networks to calculate the centrality metrics
of nodes for routing without the requirement of informa-
tion exchange. MOPS [12] and Bubble Rap [13] divide the
nodes into communities based on contact frequency, and
select the nodes having high frequency of contacting two
communities as brokers for communication between the
communities. In SOLAR [10], requesters receive the “hub
list” (places one always visits) of the destination node
from its acquaintances, and use geographic routing [26]
to send the queries to the places in the list. Mtibaa et al.
[14] assigns weights to nodes according to their centrali-
ties for the next hop selection in routing. However, these
methods only consider the node movement patterns or
routines (i.e., the places people always visit or friends
they always meet) in prediction, but neglect exceptions
in people movement. SCPS addresses this deficiency by
capturing the exceptions in routine human mobility in
location prediction.

Bayesian networks. Bayesian network is a probabilis-
tic graphical model that is widely used in machine
learning. It uses a structure to connect parameters for
probability inference. Inference, parameter learning and
structure learning are the main techniques in a Bayesian
network. Clique tree propagation [27], [28], [29] is the
most commonly used probability inference algorithm in
Bayesian networks. For parameter learning in Bayesian
networks, if the variables in a Bayesian network are
fully observed, the maximum likelihood method (ML)
[30] and the maximum a-posteriori (MAP) [31] method
can be used. Otherwise, the Expectation-Maximization
algorithm (EM) [32] can be utilized. ML and MAP
utilize a statistic method to calculate the conditional
probabilities in the Bayesian network, while EM gives
the estimation of conditional probabilities. There are two
main approaches for structure learning. One is based on
scoring function and model space searching [33], and
the other approach uses constraint based algorithms [34],
[35]. Bayesian network has been recently used in various
applications such as static indoor ad-hoc sensor location
[36], trust model construction in distributed systems
[37], [38], [39], intelligent decision rule establishment
for routing [40], mobile environment analysis [41] and
medical decision support [42].

3 THE DESIGN OF THE SCPS SYSTEM
3.1 An Overview of SCPS
Distributed hierarchical structure: SCPS can be used in
different areas such as business, government or battle-
fields. In this paper, we use a university campus as an
example to explain SCPS. The ubiquitous CPS system
that we focus on has three kinds of nodes: mobile nodes
(MNs), sensors and base stations (BSs). MNs are mobile
devices held by users and connected through an ad-
hoc network, and the sensors are in existing sensor
networks (e.g., Sensor Andrew in CMU [43]) used to
monitor environments such as weather and traffic. The
BSs has two network interfaces: ad-hoc WiFi interface
used to communicate with MNs and sensors, and wired
interface used to connect all the BSs.

SCPS builds the nodes into a hierarchical structure, as
shown in Figure 1, to efficiently manage object data for
search service. In the upper layer of the structure, the BSs
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Fig. 1. SCPS structure and object querying.

form a Chord DHT. In the lower layer, MNs and sensors
communicate with their closest BSs. We assume each MN
has a GPS which can determine its own location. The
MNs far away from BSs can communicate with them
through other MNs using a MANET routing protocol.
We use the geographical routing [26] in our approach.
In SCPS, different nodes have different functionalities:

• MNs register with BSs about the objects they would
like to share with others. MNs also send queries
for object location to BSs. The Bluetooth modules
in MNs detect people meeting events.

• Sensors sense and transmit environmental data (e.g.,
weather and traffic) to BSs, which is used for object
location prediction. Sensors can also sense the ob-
jects in the interested object list of the SCPS system
such as textbooks.

• BSs collect data from MNs and sensors, and use
a prediction model to locate objects. They receive
requests and respond to requester MNs with object
locations. Each BS is responsible for storing inverted
indexes of certain objects and calculating the loca-
tions of certain MNs (i.e., object holders). We call
the BS the holder indexer of the objects and locator of
the MNs, respectively.

An object’s name is determined based on a pre-defined
name list globally known by all nodes in the system.
An object name is for a category of objects that have
the same name and same functions. How to define the
name list for different applications leaves as our future
work. In SCPS, the data is either initially collected or
promptly collected. By “promptly collected”, we mean
that the data of an event is reported to a BS once the
event occurs. Table 1 shows all the data needed in SCPS,
the way it is collected and its source. We explain the
different types of data below.

TABLE 1
Data types and sources

Data Collecting time Source
Objects Initial/Prompt Users/sensors
MN movement routines Initial MNs
Social relationship Initial Social network or users
Environmental events Prompt Sensors
Social events Prompt Bluetooth of MNs

• Objects. The data of objects is used to produce in-
verted indexes for object search. The inverted index
of an object can be “obj1: user1, user2” generated
from the data initially input by the users or “obj1:
loc1, loc2” generated from the data promptly re-
ported by the sensors that sense the objects.
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• MN movement routines. Each MN reports its time-
location movement information to BSs at the initial
phase. BSs then derive the movement routines of
MNs (i.e., the location of a MN at a certain time)
for object location.

• Social relationship. This data can be retrieved from the
information system in the organization where the
CPS is applied or can be input by the users. For ex-
ample, Clemson University has a web portal called
TigerWeb, from which we can find the users in the
same class, the same department and the same lab.

• Environmental events. Once unusual events are
detected such as raining, traffic jams and high blood
pressure, a sensor reports the data to its nearest BS.

• Social events. We consider meeting friends as an
example for social events in this paper. When a
MN’s Bluetooth detects the meeting of persons at
the same location, the MN reports the event to its
nearest BS. SCPS can be easily extended to include
other social activities that can be detected.

Social-aware Bayesian network prediction model:
Each BS has a social-aware Bayesian network used
to calculate the location of queried objects. The BSs
use the users’ historical mobility, user relationship,
the events of meeting friends, and environmental
events in constructing a Bayesian network. The social
network helps Bayesian network to conduct prediction
more quickly and accurately without the need of a
long training time period, while the Bayesian network
helps social network to capture the external factors of
non-routine events in order to accurately locate objects.
The social-aware Bayesian network can predict persons’
behaviors based on social relationship, social events
and environmental events.

Cyber-physical searching: For the cyber-physical
search, the inverted index of an object is collected and
stored in the object’s holder indexer in the DHT-based
overlay in the distributed hierarchical structure. To
search an object held by a person, a requester sends
a query to its nearest BS. Using the DHT routing
algorithm, the BS sends the object query to the holder
indexer of the object, which further forwards the object
query to the locators of the object holders. The locators
calculate the locations of the object holders using the
social-aware Bayesian network prediction model, and
return the predicted object locations to the BS of the
requester. To search an object whose data is reported by
sensors, the holder indexer directly replies the locations
to the requester’s BS. Then, the BS forwards the response
to the requester, which relies on geographical routing
to send its object query to the object holder.

3.2 Data Collection in the Distributed Hierarchical
Structure
3.2.1 Data storage and lookups in a DHT
SCPS forms BSs into a DHT-based overlay for data
collection and storage. DHTs are a class of decentralized
distributed schemes that provide a lookup service
similar to a hash table. In DHT, each object (or file)
has a key, which is the consistent hash function of the
object’s name. A DHT has a function Insert(key, value) to
store the value to a node. We call the node the value’s
owner. Responsibility for maintaining the mapping from
keys to values is distributed among the nodes. Each

node has an ID which is the consistent hash value of its
IP address. An object is stored in a node whose ID is the
closest (or first succeeding) the object’s key. For example,
an object with key 4 is stored in a node with ID 4. If
there is no node having ID 4 and node 5 is a participant,
then the object is stored in node 5. Any participating
node can efficiently retrieve the value associated with
a given key through function Lookup(key). With such
object distribution, a change in the set of participants
causes a minimal amount of disruption. This allows
DHTs to scale to a large number of nodes and to handle
continual node arrivals, departures and failures.

3.2.2 Object data collection and storage
The DHT overlay collects and stores the different types
of data for efficient search. The holder indexer of an
object is the owner of the object’s key, and the locator
of a MN is the owner of the MN’s ID. The object data is
either input by users manually using MNs or reported
by the sensors when they detect the object. To report
object data, a node sends an index report which contains
the user name and objects (s)he holds to its nearest BS.
For example, in Figure 2, the four persons A-D send
their index reports to their nearest BSs. User A sends its
index report “User A has object 1, 2 and 3” to BS1. After
receiving an index report, a BS combines it to its local
inverted index (LII), which shows each object’s name
and their holders. For example, as shown in the figure,
in BS1’s LII, obj1’s owners are user A and user C. Each
BS periodically executes Insert(K, LII) for each object in
its LII, where K is the hash value (i.e., key) of the object’s
name. Finally, this message arrives at the holder indexer
of the object, which stores the holder information of the
object in its global inverted index (GII). For example,
if BS2 is responsible for storing the GII of obj1, then
BS1 and other BSs, which have obj1 in their LIIs, send
messages to BS2 by Insert(K1, LII). Then, BS2 updates
the record of obj1 in its GII. The data reported by
sensors is collected in the same manner. Thus, the GII
can directly indicate the locations of sensed objects.
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LII 1 LII 4

C 1 3 4

A 1 2 3

D 1 2 4

B 2 3 4

Object1 A C D

Object3 A B C
Global Inverted Index 

Index Report

Global Inverted Index 

1 A C
2 A
3 A C
4 C

1 B
2 B D
3 B
4 B D

Index Report

Index ReportIndex Report

Fig. 2. Inverted indices of objects.

In this paper, we use N to denote the number of BSs in
the DHT and use M to denote the number of all nodes
in the system.

Proposition 3.1: Suppose there are totally B different
objects in the system, then the total number of nodes that
must be contacted for object data collection and storage
is O(M +NB logN).

Proof: Since each node needs to send an index re-
port to its nearest BS, O(M) messages are needed for
sending index reports for all nodes. Since each BS needs
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to send its local inverted index for each object to the
holder indexer of this object, and the number of nodes
that must be contacted to reach a node in an N -node
DHT is O(logN) [22], the total number of hops for all
BSs to report local inverted indices for all objects is
O(NB logN). As a result, the total number of nodes that
must be contacted for object data collection and storage
is O(M +NB logN).

3.3 Social-aware Bayesian Network Prediction
Model
Bayesian network is a probabilistic graphical model that
represents a set of random variables and their condi-
tional dependencies, which can be used to model com-
plex event-driven casual relationships. In the Bayesian
network, nodes represent random variables, and the
links between nodes represent the existence of causal
relationships among nodes. It can be used to model and
infer the probability of an event (i.e., node) according
to other observed events (i.e., the node’s parent nodes
linking to it). Figure 3 shows an example of a Bayesian
network for one person. It has variables including time,
rain, illness, meeting friends and location. The location
has variables such as football field, gym, home and
basketball court. The events determine location values.
Football field is the value of the routine event when none
of the exceptional events happen. Exceptional events
such as rain, illness and meeting friends break the per-
son’s routine. For example, at time 5:00pm, if it is raining,
the probability that the person is in the gym is 1, and the
probability that the person is at the football field is 0. If
the person is ill, then he is at home. If he meets his friend
Bob, then he is playing basketball in the basketball court.

(routine)

T F
0.2 0.8 T F

0.1 0.9

T F
0.1 0.9

Time Rain Ill Meeting Loc Pr
5:00pm F F F L1 100%
5:00pm T F F L2 100%
5:00pm F T F L3 100%
5:00pm F F T L4 100%

5:00pm
L1 L2 L3 L4
60% 20% 10% 10%

… … … … …

Fig. 3. A Bayesian network for one person.
It was indicated that the movement of humans has

certain patterns [7]. Current social network based works
in MANETs [10], [9] exploit the meeting probability of
nodes in determining the next hop in routing or in com-
munity construction. However, this coarse-grained view
of node movement pattern cannot be used to accurately
predict the locations of people because it fails to consider
time and non-routine events (exceptional events). Node
A usually has higher probability to meet B than C does
not mean it has higher probability to meet B than C at a
certain time. Also, a non-routine event such as rain may
prevent a person from going to a place (s)he usually goes
at a certain time.

To provide a fine-grained view of node movement
for more accurate location prediction of people, we

Fig. 4. Social-aware Bayesian network prediction model.

consider the routine of a person as a chain through time.
Specifically, we find the place each person usually stays
during a certain time period. For example, Tom stays in
his research lab during 8:00am-12:00pm and stays in the
cafeteria during 12:00pm-1:00pm. We further rely on the
event-driven Bayesian network to capture the influence
of exceptional events. For example, the Bayesian network
can make the correct prediction that Tom is in the gym
instead of basketball court by considering the raining
event through adjusting the probability of variables in
the Bayesian network.

We further consider the events of meeting friends and
social network information in the process of Bayesian
network prediction. The social network information in-
cludes the social relationship or common interests be-
tween friends. For example, nodes A and B are friends
and they have the common interest of playing basketball.
The information of meeting friend events and social
relationship, if properly used, can produce more accu-
rate prediction result of people’s locations with shorter
Bayesian network training time. The intuition behind
this scheme is the fact that people with certain social
relationships tend to meet at certain places determined
by their relationship and common interests in our ev-
eryday life. If friends in a basketball club are meeting
each other, they are likely to play basketball or watch a
basketball game in the basketball court. If two professors
are meeting together, they are likely to be in the de-
partment building. After training, the Bayesian network
can predict the locations of people when they meet each
other according to their social relation information.

Figure 4 shows the social-aware Bayesian network
prediction model. The inputs of the prediction model
are routine data, social events, environmental events and
social relationship, while the output is the location of
a person. After the model is trained, it can predict the
locations based on people’s routines. If an exception
occurs such as an environmental event or social event,
the model makes the prediction accordingly and it needs
to consider the social information for social event. For ex-
ample, when the SCPS system detects a social event that
A and B are together, based on their relationship, it pre-
dicts that A and B are playing basketball at the basketball
court. Prediction based on non-routine events reduces
the training time length of the Bayesian network, while
raising the prediction accuracy. After the initial training,
the Bayesian network can be continuously trained from
the feedback of users on the correctness of predictions.
The training will progressively increase the prediction
accuracy and adaptability of the Bayesian network.

In Section 3.5, we will present the details of building
a Bayesian network using a real trace of node mobility.
The locator of a MN builds such a prediction model for
the MN. To enable each locator to collect the required
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data for building the Bayesian network, each MN reports
its movement routine to its locator at the initial stage,
the SCPS stores the social relationship information of
each MN to its locator initially, and the data of social
events of a MN is promptly sent to its locator. In the
DHT-based overlay, Insert(K,D) is used to send data to a
MN’s locator, where K is the ID of the MN and D is the
data. Environmental event data is sent to the locators of
MNs that are influenced by the events. If most MNs are
influenced by an event, say raining, then broadcasting is
used to notify all BSs of the event.

3.4 Cyber-Physical Searching

Fig. 5. The process of object querying.
Figure 1 shows the process of object querying in SCPS.

The sequence of steps is also illustrated in Figure 5.
When one requester wants to search an object named
obj1, it sends an object location query (OLQ) containing
the name of the object to its nearest BS, say BS1. If the
requester is not in the transmission range of any BS,
it uses geographic routing to send the query to BS1.
After receiving the query, BS1 first uses the consistent
hash function to hash “obj1” to get its key K1, and then
executes Lookup(K1,OLQ). Based on the DHT routing
algorithm, OLQ arrives at the holder indexer of obj1,
say BS2, which has the inverted index of obj1. As shown
in Figure 2, the inverted index shows that the holders of
obj1 are mobile users A, C and D. Then, BS2 hashes the
holder names and sends out the holder location queries
(HLQ) using the functions of Lookup(KA,(HLQ,obj1)),
Lookup(KC ,(HLQ,obj1)) and Lookup(KD,(HLQ,obj1)),
where KA, KC and KD are the consistent hash values
of the MN IDs. The three requests arrive at the locators
of nodes A, C and D, which predict the locations of
A, C and D, respectively. Assume BS3 is the locator
of user A. It stores the social-aware Bayesian network
prediction model of user A. Using the prediction model,
BS3 predicts the location of A and responds to BS1 with
object location reply. BS1 then replies to the requester with
the locations. After receiving the locations, the requester
sends object query to each object holder using geographic
routing, and each holder responds to the requester with
object reply. SCPS can easily adopt the scheme in CYBER
[44] to enable multi-term search. Such techniques are
orthogonal to our study in this paper. Algorithm 1 shows
the pseudo-code of the cyber-physical searching process.

Proposition 3.2: When a requester can directly send
a message to its nearest BS, the number of nodes that
must be contacted to find the object holder locations of
an object is O(M logN).

Algorithm 1: Algorithm run by a BS for object query-
ing.
// abbreviations

1 OLQ: Object Location Query, HLQ: Holder Location Query,
2 OLR: Object Location Reply, OQ: Object Query, OR: Object Reply
3 while (1) do
4 if new packet P arrives then
5 switch P do
6 case P==OLQ
7 objectName = ExtractObjectName(OLQ);
8 if !IsHolderIndexer(objectName) then

// record the addr. of the OLQ
initiator MN

9 Record(MNr , requesterList);
10 Ki = Hash(objectName);

// send OLQ to the holder indexer of
the object

11 Lookup(Ki, OLQ);
12 end
13 else

// check the inverted index and
retrieve the holder names

14 holderNameList = GetHolderNames(objectName);
15 for every holderName do
16 Kh = Hash(holderName);

// BSr: addr. of the OLQ sender
// send HLQ and BSr to each

holder of the object
17 Lookup(Kh, (HLQ,BSr));
18 end
19 end
20 endsw
21 case P==HLQ
22 personName = ExtractPersonName(HLQ);
23 location= BNPredict(personName);

// send the predicted location to BSr

24 Send(location) to BSr ;
25 endsw
26 case P==OLR
27 MNr = FindRequester(requesterList);

// send the location to MNr

28 Send(location, MNr);
29 endsw
30 endsw
31 end
32 end

Proof: Suppose a requester wishes to search an ob-
ject. It sends one message directly to its nearest BS. The
number of nodes that must be contacted to reach a node
in an N -node DHT is O(logN) [22]. Therefore, the object
location query from the nearest BS travels O(logN) hops
to reach the holder indexer BS. The maximum number of
nodes that can hold the requested object is M . Then, the
number of BSs must be contacted for the queries from the
holder indexer to the locators is O(M logN), and that for
the responses from the locators to the nearest BS is O(M).
The nearest BS then sends one message to the requester.
As a result, the total number of nodes contacted is
1 + O(logN) + O(M logN) + O(M) + 1 = O(M logN).

3.5 Bayesian Network Construction Using the Real
Trace
Real trace data. Reality [45] is a dataset collected at
the MIT Reality Group, which contains (1) survey data
of 94 users in 10 months, (2) cell phone trace, and (2)
Bluetooth trace. The survey includes questions such as
“is this person a part of your close circle of friends?”
and “do you own a car?” We derived the friend social
relationship from the survey data. The testing field at
MIT is divided into areas, and each area is divided
into cells. Each cell phone tower has a Tower ID (TID)
consisting of IDs of the area and cell where it is located.
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Every record of a cell phone trace includes the time and
location. The location is represented by the TID of the
tower that the user was using at that time. The Bluetooth
trace records the meeting time and MAC addresses of
Bluetooth devices carried by users, from which we can
infer the meeting events of users. Since the time period
that users are active is usually during 8:00am-10:00pm,
we used the records during this time in the dataset.
To make the Reality dataset suitable to our design and
testing scenarios, we processed the dataset information
as described below.
• Node movement. We need location records with a certain
granularity, say for every minute, in order to simulate
node movement. However, many missing records for
days with “no signal” in the dataset prevent us from
identifying the exact location of nodes. We went through
all records to retrieve users with few missing records and
a long time period of records. We identified 19 such users
with a relatively long period of records of 11 days. We
used the records of the first 10 days for training of the
prediction model, and those of the last day for prediction
experiments.
• Social events. From the Bluetooth trace, we found that
the TIDs of friend meetings at different times are always
different. This does not necessarily mean that the friends
always meet at different locations at different meeting
occurrences. This is because different cell phone service
providers, or even the same provider, use several towers
with different TIDs in the same area. To generate the
events of meeting friends, we made modification on the
selected dataset. Specifically, we identified the location
of the longest accumulated meeting time of two nodes
during the 11 days, and changed all meeting locations
of them to that location.
• Environmental events. The Reality dataset does not pro-
vide environmental event information used in the pre-
diction model of SCPS for accurate prediction. We as-
sumed that a TID represents a location, calculated the
frequency of each user visiting each location during the
11 days, and considered the infrequent location visiting
occurrences as results of environmental events. For ex-
ample, at 5:00pm, user A visits Loc1 with a probability
of 80%, and Loc2 and Loc3 with a probability of 10%,
respectively. Then, we considered the occurrences of
visiting Loc2 and Loc3 as the result of event1 and event2,
respectively. In the dataset, if a user visits a certain place
at a certain time corresponding to an event, we assume
this event occurs.
• Physical location. The Reality dataset does not provide
physical locations of towers, while SCPS provides a real
physical location (x, y) coordinates for a queried object.
Since records of close areas are always recorded together
in the dataset, we measured the proximity of two areas
according to the frequency that two records of these
areas are together. Based on the measured proximity,
we then matched the areas to the buildings on the MIT
map, and randomly distributed the TIDs of each area
around the corresponding building. Then, we measured
the (x, y) coordinates to represent each physical location.

Bayesian network structure. In the following, we
describe how Bayesian network of each person, as shown
in Figure 3, is created. To construct a Bayesian network,
we first need to identify the variables and (or) their val-
ues. We then build a Conditional Probability Table (CPT)

of each variable by parameter learning. We identify three
variables: time, event and location. The time variable has
7 different values (14 hours from 8:00am to 22:00pm are
divided into 7 intervals with a two-hour granularity).
The event variable has two values: true and false, and the
location variable has a number of values indicating dif-
ferent locations. The parents of location are time and event
because human mobility is influenced by both factors.
Accordingly, we constructed the Bayesian network using
all retrieved events, locations and time variables from the
records in the real trace. In the Bayesian network, there
are links from: 1) time to the location (routine), and 2)
events to the locations (exceptional events).

Bayesian network parameter learning. After the
structure of the Bayesian network is built, it needs to
learn the parameters before being able to conduct loca-
tion prediction. In the real trace, since the variables are
all observed, we use the maximum likelihood algorithm
[30] for parameter learning. This algorithm estimates a
parameter by maximizing the likelihood function of the
parameter. The estimation of a parameter is calculated
using the following equation:

Pr(A | B) =Pr(X = x, Y = y)/Pr(Y = y)

=[n(X = x, Y = y)/N ]/[n(Y = y)/N ]

=n(X = x, Y = y)/n(Y = y) (1)

where X and Y are variables, x and y are values of the
variables, n(X = x, Y = y) is the number of records that
meet X = x and Y = y, and N is the total number of all
records.

From the dataset, we calculated the historical fre-
quency (Pr) of a user visiting different locations at
different time intervals. For example, if there are 100
records at 5:00pm, in which 60 records are for Loc1, 20
records for Loc2, 10 records for Loc3, and 10 for Loc4,
respectively, we retrieve

Pr(Loc = Loc1, T ime = 5 : 00pm)

= n(Loc = Loc1, T ime = 5 : 00pm)/n(T ime = 5 : 00pm)

= n(X = x, Y = y)/n(Y = y) = 60%, (2)

which means that the probability of the person staying
at Loc1 at 5:00pm equals 60%. In this way, we can infer
that at 5:00pm, the probability of the person staying
in Loc1 is 60%, in Loc2 is 20%, in Loc3 is 10%, and in
Loc4 is 10%. Recall that since the real trace does not
provide data for non-routine events, we assume that
a person visits an infrequently visited place due to an
exceptional event. Using the above statistic method,
we can retrieve the probability distribution of the
locations and corresponding events. We then achieved
the probability distribution of locations for the Bayesian
network structure. Figure 3 illustrates the examples of
CPTs for the variables using the calculated probabilities,
and the dependency of locations on the events and time.
When an exceptional event happens, the probability of
the person staying at the corresponding location is 100%.
When no exceptional events happen, the probability
that the person stay at the routine location is 100%.

4 PERFORMANCE EVALUATION
We conducted real-trace driven simulations to evaluate
the prediction accuracy and system effectiveness of the
proposed SCPS system based on the MIT Reality dataset
[45] on human mobility.
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4.1 Experiment Settings
We conducted experiments on NS-2 [46]. We used Plan-
etSim [47] to test the overhead and delay in the DHT-
based overlay formed by BSs, and used the Bayesian
Network Tools [48] for Bayesian network inference to
test the Bayesian network prediction delay. We adopted
GPSR [26] for geographic routing in the simulation.
GPSR is used when a requester sends a query to its
nearby BS not within its transmission range and when
a requester sends an object query to the object holder.
If the location the requester received is incorrect and
the packet arriving at the location cannot find the object
holder, GPSR uses perimeter mode routing (also called
face routing). The packet is routed along the faces of a
planar subgraph until either the destination is reached or
greedy forwarding can be performed again. To prevent
routing loops in the perimeter routing, the packet records
the ID of the first node forwarder in perimeter routing
mode. If the packet returns to this node, it means a
routing loop is generated and the packet is dropped.

We compared our SCPS system with SCPS with-
out social-aware prediction (SCPSw/oS), SCPS without
Bayesian network prediction (SCPSw/oP), Snoogle [4],
statistic based method (Statistic) [9], and MOPS [12].

Variants of SCPS. SCPSw/oS is SCPS without con-
sidering social events in Bayesian network prediction.
SCPSw/oP is SCPS without using the location prediction
mechanism. Instead, it uses the periodical reporting from
mobile devices to BSs to keep track of the locations of
every user. When users are out of the range of BSs,
they use multi-hop geographic routing to report their
locations.

Snoogle. Snoogle [4] is a centralized cyber-physical
search engine with a two-layer hierarchical structure
over the sensor nodes. The higher layer is a central server
called KeyIP and the sensors in the lower layer are called
IPs. Queries for arbitrary objects are firstly directed to
the KeyIP, which returns the best matched IPs. Then,
nodes send queries to those IPs, which send back the
IDs of nodes containing the searched objects by checking
their inverted indexes. In the simulation, we used BSs to
function as the IPs, and used the BS in the center of the
simulation area as the keyIP. To be comparable to SCPS,
Snoogle also adopts geographic routing, and relies on
periodical location reporting to IPs for destination loca-
tions. In Snoogle and SCPSw/oP, mobile nodes report
their locations to BSs every 5 seconds, thus the locations
retrieved by requesters are always updated.

Statistic. The statistic based method here refers to a
scheme similar to SCPS, but only uses routines as the
location prediction result. It achieves the probability
distribution of variables over time from the training
data, and considers the variable with the highest
probability as the prediction result. For example, from
the visiting probability distribution of all the locations
Tom visited at 12:00pm, we find that he visited the
cafeteria with the highest probability. Then, the cafeteria
will be the prediction result at 12:00pm for Tom in the
statistic based method.

MOPS. MOPS [12] is a publish/subscribe system
based on social network information. It clusters nodes
with frequent communications into a community. It uses
nodes having frequent contact with different communi-
ties as brokers for inter-community communication and

uses direct contact between nodes in the same commu-
nity for intra-community communication. In MOPS, a
node carries a message until it meets the destination.

Performance Comparison. SCPS distributes load
among BSs, while Snoogle heavily relies on the central
server for object searching. Therefore, many requests in
Snoogle may not be resolved due to the overload of the
central server. The experimental results will show the
advantage of the distributed manner of SCPS compared
with Snoogle. SCPS is also advantageous with higher
location prediction accuracy since it jointly considers
routine data, social events and environmental events.
We will show this advantage by comparing SCPS with
SCPSw/oS and Statistic that only consider part of the
factors. SCPS is novel because it leverages the social net-
works without relying on the periodical location reports
from the mobile nodes, which otherwise generates a high
overhead. We will show this merit by comparing SCPS
with SCPSw/oP that uses periodical location reports.
Further, SCPS uses a backbone DHT and geographi-
cal routing to actively forward messages, while MOPS
completely relies on the node movement to forward
messages though it also leverages social networks. Thus,
SCPS can achieve faster object querying than MOPS.

Table 2 summarizes the default parameters used in
the simulation unless otherwise specified. We conducted
our simulations in a 600m×600m region with 69 nodes,
among which 19 nodes move according to the real trace
and 50 nodes move randomly with a speed randomly
chosen from [0,2]m/s. This speed is close to the normal
human walking speed. The communication range of
wireless ad-hoc nodes is 200m. All results over 2000
queries are averaged for the final results. The node
movement and BS distribution are designed based on
the real trace data described in Section 3.5.

We randomly assigned 95 items (5 copies of 19 items)
to 19 persons. Every node starts to query after 20 seconds
initialization time period at a certain query rate for
580 seconds. The simulation then ran 20 seconds before
stopping. A query rate of 1/x means a query is sent out
every x seconds. The item queried is randomly chosen
from the 19 items. The length of a query packet is 28
bytes. There is no resending mechanism. If a packet fails
to arrive at the destination, the item querying fails.

TABLE 2
simulation parameters

Environment Parameters Default Value
Simulation area 600m × 600m

Node Parameters Default Value
Total number of mobile nodes 69
Total number of base stations 7
Physical layer IEEE 802.11
Communication range 200m
Movement speed 0m/s - 2m/s
The length of a query 28 bytes
Query Parameters Default Value
Query rate 1/10 (one query every 10 seconds)
Initialization period 20s
Query time 580s

We mainly consider the following metrics:
• Location query drop rate. This is the average ratio

between the number of object location replies and
the number of object location queries. It reflects the
successful rate of the object location queries.

• Object hit rate. This is the average ratio between the
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number of object replies and the number of queries
sent from the requesters to the object holders using
geographic routing. This metric can reflect the accu-
racy of location prediction since a wrong location in
geographical routing leads to routing failure.

• Overhead. This is the total number of hops passed
by all messages in object searching. The messages
do not include hello messages.

• Query delay. This is the average delay time of all
successfully resolved object queries. The delay time
of a query is the time elapsed from the time a
requester sends out an object location query to the
time the requester receives the object reply.

4.2 Prediction Accuracy
We compare the location prediction accuracy of SCPS
with Statistic and SCPSw/oS. The training data for all
methods includes the first 8400 records during the first
10 days we selected from the Reality trace. As described
in Figure 4, the inputs of the prediction model in SCPS
are the routine and environmental events, social events
(i.e., people meeting) and social network information.
SCPSw/oS does not need the social-related information;
while Statistic only needs routine as input. The outputs
of all methods are the every-minute locations of persons
on the 11th day. Then, we calculated the prediction
accuracy by comparing the predicted results with the
11th day real trace data. The prediction accuracy is
defined as the ratio of the number of predicted locations
which are identical to the 11th day records to the total
number of the records.
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Fig. 6. Prediction accuracy.

Figure 6 shows the
accuracy of the three
prediction methods
for predicting the
locations of 19
persons. We observe
that SCPS achieves
the highest prediction
accuracy among the
three methods. It
achieves around 82%
average prediction
accuracy, and even reaches 100% for some persons.
SCPSw/oS produces around 70% average prediction
accuracy, which is lower than SCPS. The average
prediction accuracy of SCPS is 12% higher than
that of SCPSw/oS, which indicates that combining
social network information into the normal Bayesian
network prediction model helps raise the prediction
accuracy. Statistic achieves the lowest (around 31%)
average prediction accuracy. This shows that Statistic
cannot correctly predict the occurrence of the non-
routine events without taking exceptional events
(environmental and social events) into consideration,
resulting in low prediction accuracy. These results verify
the high location prediction accuracy of the social-aware
Bayesian network in SCPS.

4.3 Performance with Different Query Rates
In this experiment, we examined the performance of
SCPS and other methods at different query rates. We
varied the query rate of nodes over 7 different rates from
1/20 to 1.

4.3.1 Location Query Drop Rate
Figure 7(a) shows the average location query drop rate of
SCPS and other four methods with different query rates.
Because nodes in MOPS always carry messages until
they meet the destinations, MOPS’s location query drop
rate is always 0. Therefore, we do not include MOPS
into the figure. We observe that the location query drop
rate of Snoogle is much higher than the other methods
and it increases dramatically as the query rate rises. It
increases from 3.3% to 5.9% as the query rate increases
from 1/20 to 1. This is because the centralized scheme
of Snoogle suffers from congestion when there are a
large amount of queries sent to the central KeyIP. The
location query drop rates of SCPS and other methods
are lower and have smaller increases than Snoogle since
they adopt distributed structures. Using a distributed
structure, queries are sent to different BSs instead of
one central node. The distribution of workload among
different BSs reduces the chances of BSs being congested.

We then discuss the drop rates of all methods ex-
cept Snoogle. From the figure, we see that the varying
ranges of the location query drop rates of SCPS, Statis-
tic, SCPSw/oS, SCPSw/oP are [0.06%, 0.54%], [0.06%,
1.85%], [0.06%, 1.65%] and [0.03%, 0.84%], respectively.
Their average location query drop rates for different
query rates are 0.21%, 0.74%, 0.66% and 0.34%, respec-
tively. We observe that the drop rates of all methods
when the query rate is no higher than 1/5 are under
0.2. At the highest query rate, all methods have the
highest drop rates. This is because a higher query rate
generates more messages and hence more network con-
gestions in routings, producing a higher location query
drop rate. It is interesting to find that, at the highest
query rate increases to 1, the location query drop rate
of SCPSw/oS and Statistic increase more rapidly than
SCPS. This is caused by the traffic congestion due to less
accurate predicted locations in SCPSw/oS and Statistic.
A packet with a wrong location is delivered for many
hops until it revisits the first node it met in the perimeter
routing mode or its TTL becomes 0. Many of such
“hanging packets” generate congestion in the network,
leading to high location query drop rate. SCPSw/oP
generates higher location query drop rate than SCPS.
In SCPSw/oP, the periodical reporting produces many
messages, which increases the congestion and drop rate.
The distributed structure adopted in SCPS and its higher
prediction accuracy help it to reduce congestion, hence
reduce the drop rate and enhance its scalability.

4.3.2 Object Hit Rate
Figure 7(b) shows the average object hit rate of the six
methods with different query rates. The varying ranges
of the average object hit rates of SCPS, SCPSw/oS,
Statistic, SCPSw/oP and Snoogle are [76%, 81%], [59%,
72%], [41%, 63%], [78%, 85%] and [77%, 83%], respec-
tively. Their average values of these object hit rates for
different query rates are 77%, 65%, 50%, 81% and 80%
respectively. We find that the object hit rate of SCPS
is higher than the other two prediction based methods
(SCPSw/oS and Statistic). This is because it can produce
more accurate locations than the other two methods due
to its higher prediction accuracy (as shown in Figure 6),
so that a query can be sent to the correct destination with
higher probability. The higher object hit rate of SCPS
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Fig. 7. Performance of object search with different query rates.

than SCPSw/oS verifies the effectiveness of considering
social events in prediction. Similarly, the object hit rate
of SCPSw/oS is higher than Statistic, which verifies the
importance of considering exceptional environmental
events in predicting.

Relying on periodical location reporting, SCPSw/oP
and Snoogle can always provide the accurate object
locations, thus produce the highest object hit rate. It is
interesting to see that the object hit rate of SCPS is nearly
comparable to SCPSw/oP and Snoogle. This is caused
by two reasons. First, SCPS provides relatively highly
accurate object locations. Second, nodes in SCPSw/oP
and Snoogle periodically send location reporting mes-
sages, which greatly increases the channel contention
and thereby reduces hit rates, while SCPS does not need
the periodical location reporting.

In addition, we see that MOPS exhibits sharp decrease
in the object hit rate as the query rate increases. When the
brokers of different communities meet each other, due
to limited meeting time, they only can exchange limited
number of messages. Thus, higher query rate produces
more undelivered messages, which are dropped when
the test completes, leading to lower object hit rate.
These experimental results confirm that SCPS has very
high object hit rate even at high query rates, which is
comparable to reporting based methods.

4.3.3 Overhead
Figure 7(c) plots the total overhead of the six methods
with different query rates. The varying ranges of the total
overhead of SCPS, SCPSw/oP and Snoogle are [28000,
484323], [49789, 588306] and [25289, 361349], respectively.
Their average total overhead for different query rates
are 216214, 260750 and 166302, respectively. We find
that the overhead of SCPSw/oP is higher than SCPS.
This is because nodes in SCPSw/oP need to periodically
report their locations to nearby BSs, while SCPS does
not have this requirement due to its capacity of location
prediction. It is interesting to see that, though also
using location reporting, Snoogle has lower overhead
than SCPSw/oP and SCPS. This is due to two reasons.
1) Snoogle has high location query drop rate, which
reduces the number of hops traversed by messages in
multi-hop transmission. 2) Comparing with Snoogle,
SCPSw/oP and SCPS need extra overhead in the DHT
layer for looking up the locations of object owners.

We observe that the varying range of the total over-
head of MOPS is [1800, 7900], and its average total
overhead for different query rates is 5675. The over-
head of MOPS is much lower than the other meth-
ods. This is because the packets in MOPS are mainly

transmitted by brokers carrying the messages instead of
hop-by-hop transmission. For Statistic and SCPSw/oS,
the total overhead increases from 43000 to 729161,
and from 39000 to 639161, respectively. Their average
total overheads for different query rates are 316055
and 281073, respectively. We can find that the over-
head follows Statistic>SCPSw/oS>SCPS. That is be-
cause the location accuracy of the methods follows
Statistic<SCPSw/oS<SCPS. Packets with wrong loca-
tions result in many “hanging packets”, thereby increas-
ing overhead. These observations verify that SCPS has
relatively lower overhead compared with methods with
similar location query drop rate and object hit rate.

4.3.4 Query Delay
Figure 7(d) illustrates the average query delay of the six
methods with different query rates. We find in our ex-
periment result that the average delay of MOPS is much
higher than the other methods (about 50s). Thus, we do
not include MOPS in the figure. The reason for the high
delay is because the inter-community communication is
conducted only when brokers meet each other instead
of using hop-by-hop transmission.

The varying ranges of the query delay of Snoogle,
SCPSw/oP, Statistic, SCPS and SCPSw/oS are [0.02,
0.08], [0.02, 0.06], [0.03, 0.08], [0.08, 0.12] and [0.08, 0.14],
respectively. Their average query delays for different
query rates are 0.04, 0.03, 0.05, 0.10 and 0.11, respec-
tively. We observe that Snoogle, SCPSw/oP and Statistic
generate lower query delay than SCPS and SCPSw/oS.
This is because the first three methods do not have
the Bayesian network location prediction process, which
takes about 0.0675s per prediction. We also see that
Statistic produces a slightly higher query delay than
Snoogle and SCPSw/oP. Statistic only uses routines and
considers the location with the highest probability of a
person as the prediction result. Thus, it may generate in-
correct location prediction, which results in much longer
delay for some packets in routing. Though most of the
incorrect location packets are dropped, a few of them
can arrive at the destination after long detour in the
network, leading to larger average query delay. Without
considering social events, SCPSw/oS has lower location
prediction accuracy than SCPS, thus it generates higher
average query delay than SCPS.

As the query rate increases, the query delay of
Snoogle increases faster than SCPSw/oP ([0.02, 0.08]
versus [0.02, 0.06]). This is because the centralized
KeyIP has a long queue when the query rate is high.
We observe that the query delays of all methods grow
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Fig. 8. Performance of object search with different node moving speeds.

as the query rate increases due to network congestion
generated by more queries.

The above observations show that SCPS achieves the
lowest location query drop rate, comparatively high
object hit rate as the reporting based methods, the
second to the lowest overhead, and relatively low query
delay. Though Snoogle generates the lowest overhead
and high object hit rate, its location query drop rate is
extremely high.

4.4 Performance With Different Node Moving
Speeds
In this test, we examined the performance of SCPS and
other methods at different node moving speeds. The
moving speed is randomly chosen from [0,2x] m/s, and
x is varied from 1 to 5 with 1 increment in each step.

4.4.1 Location Query Drop Rate
Figure 8(a) shows the average location query drop rate
of SCPS and other four methods. We observe that the
drop rates of all methods remain nearly constant as
speed increases. Specifically, the drop rates of Statistic,
SCPSw/oS, SCPSw/oP, SCPS and Snoogle remain at
around 0.14%, 0.09%, 0.05%, 0.08% and 2.80%. This result
implies that the node moving speed does not affect
the location query drop rate. Essentially, this is due to
the reason that the geographic routing can successfully
deliver a message to the node that is the nearest to the
destination regardless of the node moving speed. The
factors affecting the location query drop rate are the
traffic congestion and the node query load.

From the small figure, we see that the location query
drop rate of Snoogle is significantly higher than the other
methods at different node moving speeds. This is due
to the centralized scheme of Snoogle as explained for
Figure 7(a). From the large figure, we see that in the
decentralized methods, the location query drop rate fol-
lows Statistic>SCPSw/oS>SCPS>SCPSw/oP. This is be-
cause that the location accuracy of the methods follows
Statistic<SCPSw/oS<SCPS<SCPSw/oP. Low prediction
accuracy generates “hanging packets”, which results in
severe channel contention and network congestion, in-
creasing query drop rate.

4.4.2 Object Hit Rate
Figure 8(b) shows the average object hit rate of the six
methods at different node moving speeds. The average
object hit rates of Statistic, SCPSw/oS, SCPS, Snoogle
and SCPSw/oP are 55.94%, 70.86%, 78.15%, 82.95% and
84.59% respectively. The average object hit rate of MOPS

increases from 50.18% to 58.79% when the maximum
moving speed increases from 2m/s to 32m/s. From
these results, we can make three observations. First,
SCPS and other geographic routing based methods
produce almost constant object hit rates with different
mobility speeds due to the same reason as in Figure 8(a).
Second, the object hit rates of the methods still follow
Statistic<SCPSw/oS<SCPS<Snoogle<SCPSw/oP due
to the same reason as Figure 7(b). Third, unlike other
methods that produce constant object hit rates, the
object hit rate of MOPS increases as the node moving
speed increases. It is lower than Static at low node
moving speeds and then higher than Static at high node
moving speeds. With low node moving speeds, brokers
in MOPS have fewer chances to meet each other, leading
to lower object hit rate. Higher node movement speeds
increase the meeting chances of brokers, thus generating
higher object hit rate.

4.4.3 Overhead
Figure 8(c) plots the average overhead of the six methods
with different node moving speeds. The average over-
heads of Snoogle, SCPS, SCPSw/oS, SCPSw/oP, Statis-
tic and MOPS remain at around 42773, 52364, 81214,
78273, 89000 and 3247, respectively. First, we find that
all methods have almost constant overheads at different
node moving speeds. This is due to the adoption of the
geographic routing which always forwards a message
along the geographically shortest path, as we explained
in Figure 8(a). We also see that the average overhead of
MOPS falls in the range [3136, 3426]. MOPS does not
have an increase in overhead even though its object hit
rate increases as the moving speed grows. This is because
the messages in MOPS are carried by brokers, and the
maximum hops for one successful delivery is always
no more than 2. We can observe that the overheads of
the methods still follow the order of MOPS<Snoogle
<SCPS<SCPSw/oP≈SCPSw/oS<Statistic due to the
same reason as Figure 7(c).

4.4.4 Query Delay
Figure 8(d) illustrates the average query delay of the
six methods with different node moving speeds. The
average query delays of Snoogle, SCPSw/oP, Statistic,
SCPS, SCPSw/oS stay around 0.016, 0.019, 0.031, 0.082
and 0.093, respectively. The average delays of SCPS
and other methods remain almost constant over dif-
ferent moving speeds. This is also because the packet
forwarding in geographic routing is not affected by
the moving speeds of nodes. Also, we can observe
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Fig. 9. Performance of object search with different network sizes.

that the delays of the methods still follow the or-
der of Snoogle≈SCPSw/oP<Statistic<SCPS<SCPSw/oS
due to the same reason as Figure 7(d).

The above experimental results with different node
moving speeds show that SCPS is dynamism-resilient.
It generates low location query drop rate, high object hit
rate, low overhead without compromising query delay
at different node moving speeds.

4.5 Performance With Different Network Sizes
In this test, we examined the performance of SCPS and
other methods at different network sizes. We varied the
network size by adding different number of random
nodes that send queries. The number of nodes we added
is ranged from 30 to 110 with 20 increase in each step.

4.5.1 Location Query Drop Rate
Figure 9(a) shows the average location query drop rate
of SCPS and other four methods with different network
sizes. From the small figure, we see that the location
query drop rate of Snoogle increases rapidly (from
2.69 to 3.97) as the network size increases, because the
centralized scheme and periodical location reporting
make Snoogle vulnerable to congestion. When there are
more nodes launching queries and reporting locations
at the same time, the KeyIP becomes congested, or the
interference around KeyIP becomes too severe for it to
receive queries correctly. SCPS and other decentralized
methods do not have this problem, since the queries
are sent to different BSs. Also, we find that the drop
rates of Statistic, SCPSw/oS and SCPSw/oP increase
much faster than SCPS as the network size increases.
Specifically, the varying ranges of the average location
query drop rates of SCPS, SCPSw/oP, SCPSw/oS and
Statistic are [0, 0.2], [0.02, 0.76], [0, 0.80] and [0.04, 0.84],
respectively. In Statistic and SCPSw/oS, the increase of
the number of queries leads to the increase of “hanging
packets” (as explained for Figure 7(a)) and the traffic
congestion and load on BSs. In SCPSw/oP, nodes need
to send a large number of location reporting messages to
the BSs. Then, the congested and overloaded BSs make
the packets with correct locations have fewer chances to
be successfully delivered to BSs, leading to sharp growth
of drop rates. The above observations confirm the low
location query drop rate and high scalability of SCPS.

4.5.2 Object Hit Rate
Figure 9(b) shows the average object hit rate of the
six methods with different network sizes. The varying
ranges of the average hit rates of SCPSw/oP, Snoogle,
SCPS, SCPSw/oS, Statistic, MOPS are [85, 84], [85, 83],

[83, 77], [65, 54], [60, 45], [59, 47] when the number
of nodes increases from 49 to 129, respectively. First,
we find that SCPSw/oP, Snoogle and SCPS achieve
high object hit rates. This is because they generate high
prediction accuracy, so that the geographical routing
can deliver the messages to the destination with high
probability. Also, SCPS generates slightly lower hit rate
since it uses location prediction rather than periodical
reporting, which generates higher accurate prediction
but also a large number of messages. We can also see
that the object hit rate of SCPS, SCPSw/oS and Statistic
drop as the network size increases. This is because more
requests generate more incorrect location predictions,
leading to higher traffic congestion in the perimeter
mode routing in the geographic routing. As the network
size scales up, the object hit rate of SCPS decreases at
a much slower speed than SCPSw/oS and Statistic, be-
cause it has higher prediction accuracy than SCPSw/oS
and Statistic. Statistic has low prediction accuracy which
leads to “hanging packets”, and SCPSw/oP produces
many messages due to periodical reporting.

In addition, we find that the object hit rate of MOPS
increases as the network size increases. The network area
size is fixed in the simulation. As the number of nodes
increases, the density of nodes increases. Therefore, the
opportunity of nodes meeting each other increases, lead-
ing to higher object hit rate. These observations confirm
that SCPS can maintain a high object hit rate in different
network scales.

4.5.3 Overhead
Figure 9(c) plots the average overhead of the six methods
with different network sizes. When the number of nodes
increases from 49 to 129, the varying ranges of the
average overheads of MOPS, Snoogle, SCPS, SCPSw/oS,
Statistic, SCPSw/oP are [2098, 8904], [32555, 75520],
[43438, 109203], [47000, 130000], [49999, 143900] and
[54495, 148621], respectively. Their average values for
different network sizes are 4908, 54165, 71514, 85904,
94639 and 102041, respectively. The average overhead
follows MOPS < Snoogle < SCPS < SCPSw/oS < Statis-
tic < SCPSw/oP. From the experimental results, first,
we find that the overhead of SCPSw/oP is the highest
and increases very fast. This is because it has both the
overhead in the DHT layer and in location reporting.
Snoogle only has the reporting overhead, while SCPS
and other DHT based methods only have the DHT
overhead. Second, we observe that the overheads of
other prediction based methods are higher than SCPS.
This is because as the network size increases, there will
be more “hanging packets” resulted from the packets
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with wrong locations. MOPS always produces the lowest
overhead in different network sizes because its message
delivery path length is always more than 2.
4.5.4 Query Delay
Figure 9(d) illustrates the average query delay of the six
methods with different network sizes. The average query
delays of SCPSw/oP, Snoogle, Statistic, SCPS, SCPSw/oS
fall in the range [0.01355, 0.042838], [0.012, 0.075],
[0.030758, 0.09], [0.073942, 0.092], [0.085885, 0.161512],
respectively. Their average values for different network
sizes are 0.03, 0.04, 0.06, 0.08 and 0.11. We observe
that the query delay of Snoogle exhibits a rapid in-
crease, while the delay of SCPS and SCPSw/oP maintain
at a relatively stable level. The reason for Snoogle’s
sharp performance decrease is the same as Figure 7(d)
that the central KeyIP easily becomes congested. How-
ever, SCPS and SCPSw/oP do not have this prob-
lem due to their adoption of distributed structure and
high prediction accuracy. Also, it is interesting to see
that the delay of SCPSw/oS and Statistic also in-
crease rapidly as the network size increases though
they use a distributed method. This is because their
low prediction accuracy leads to more incorrect loca-
tion responses, which increases the delay in the net-
work due to the same reason as in Figure 7(d). Also,
we can still see that the delays of the other methods
follow SCPSw/oP<Statistic<SCPS<SCPSw/oS. Though
the delays of those methods increase as the network
size scales up, the relative performance of the methods
remains the same. The reason for this result is the same
as in Figure 7(d). These observations confirm that SCPS
has high scalability and efficiency in terms of overhead
and query delay.

5 FUTURE STUDY
In order to use SCPS to implement real world applica-
tions we will need to address the following issues.

5.1 Naming and Disambiguation
A key feature of the system is the reference to objects
by names in the form of user A has object 1, 2 and 3.
Some applications may need a search engine that can
locate unique objects belonging to a unique user. The
issue of creating a unique ID to the object can be complex
especially if the user or object names are not unique since
the same user may have multiple objects with the same
general category name like car keys. Even if the system
creates a unique ID for the object, the user may prefer to
resort to more descriptive names rather than referring to
the object by its unique ID. The system therefore needs
to include a facility for disambiguating names using
reasoning and contextual information.

5.2 Date and Time based Reasoning
Like other social network based works, the system cur-
rently uses knowledge and heuristics about people’s
routine activities, and schedules and assumes a daily
pattern. However, due to a variety of factors including
seasonal changes and holidays, this prediction may be
wrong. Therefore, the system will need to be able to ad-
just its predictions based on rules and other knowledge
about the users and their space and time context. For
example, people often have routines that vary weekly,

monthly, and even seasonally. A lot more data must be
entered to the Bayesian network to model these types of
routines.

6 CONCLUSION
In this paper, we propose a Social-aware distributed
Cyber-Physical human-centric Search engine (SCPS) that
provides a scalable, efficient and accurate search service
for physical objects carried by moving people. SCPS con-
sists of three components: distributed hierarchical structure,
social-aware Bayesian network prediction model and cyber-
physical searching algorithm. The distributed hierarchical
structure builds BSs into a DHT-based overlay in the
higher layer, and connects MNs and sensors to BSs in
the lower layer. The BSs collect data from MNs and
sensors, and organize data in the DHT for subsequent
scalable and efficient searching. BSs employ social-aware
Bayesian network prediction models to calculate the
locations of the queried objects. By leveraging the node
routine mobility pattern in the social network, SCPS does
not need periodical location reporting to keep track of
objects. Further, SCPS combines social network with the
Bayesian network to capture the node mobility changes
due to exceptional events, and thereby provides high
prediction accuracy. The cyber-physical searching algo-
rithm takes advantage of DHT functions to achieve scal-
able and efficiency object querying. Extensive real-trace
driven simulation results are presented to show the effi-
ciency and location prediction accuracy of SCPS in com-
parison with existing methods. The results demonstrate
the enhancement of efficiency by leveraging social net-
works and eliminating the periodical location reporting,
and the importance of integrating social network with
the Bayesian network prediction model to enhance the
accuracy of the location calculation in object searching.

In the future, in addition to the two aforementioned
issues, we plan to study how to further improve the
prediction accuracy by utilizing more information from
social networks such as the contact frequency. We also
plan to further explore the security issues in SCPS such
as using the access control mechanism to protect user
privacy, and using the encryption mechanism to avoid
man-in-the-middle attacks.
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